# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch from functools import partial from .modeling import ImageEncoderViT, MaskDecoder, PromptEncoder, Sam, TwoWayTransformer from torch.nn import functional as F def build_sam_vit_h(args): return _build_sam( encoder_embed_dim=1280, encoder_depth=32, encoder_num_heads=16, encoder_global_attn_indexes=[7, 15, 23, 31], image_size=args.image_size, checkpoint=args.sam_checkpoint, encoder_adapter = args.encoder_adapter, ) build_sam = build_sam_vit_h def build_sam_vit_l(args): return _build_sam( encoder_embed_dim=1024, encoder_depth=24, encoder_num_heads=16, encoder_global_attn_indexes=[5, 11, 17, 23], image_size=args.image_size, checkpoint=args.sam_checkpoint, encoder_adapter = args.encoder_adapter, ) def build_sam_vit_b(args): return _build_sam( encoder_embed_dim=768, encoder_depth=12, encoder_num_heads=12, encoder_global_attn_indexes=[2, 5, 8, 11], image_size=args.image_size, checkpoint=args.sam_checkpoint, encoder_adapter = args.encoder_adapter, ) sam_model_registry = { "default": build_sam_vit_h, "vit_h": build_sam_vit_h, "vit_l": build_sam_vit_l, "vit_b": build_sam_vit_b, } def _build_sam( encoder_embed_dim, encoder_depth, encoder_num_heads, encoder_global_attn_indexes, image_size, checkpoint, encoder_adapter, ): prompt_embed_dim = 256 image_size = image_size vit_patch_size = 16 image_embedding_size = image_size // vit_patch_size sam = Sam( image_encoder=ImageEncoderViT( depth=encoder_depth, embed_dim=encoder_embed_dim, img_size=image_size, mlp_ratio=4, norm_layer=partial(torch.nn.LayerNorm, eps=1e-6), num_heads=encoder_num_heads, patch_size=vit_patch_size, qkv_bias=True, use_rel_pos = True, global_attn_indexes=encoder_global_attn_indexes, window_size=14, out_chans=prompt_embed_dim, adapter_train = encoder_adapter, ), prompt_encoder=PromptEncoder( embed_dim=prompt_embed_dim, image_embedding_size=(image_embedding_size, image_embedding_size), input_image_size=(image_size, image_size), mask_in_chans=16, ), mask_decoder=MaskDecoder( num_multimask_outputs=3, transformer=TwoWayTransformer( depth=2, embedding_dim=prompt_embed_dim, mlp_dim=2048, num_heads=8, ), transformer_dim=prompt_embed_dim, iou_head_depth=3, iou_head_hidden_dim=256, ), pixel_mean=[123.675, 116.28, 103.53], pixel_std=[58.395, 57.12, 57.375], ) # sam.train() if checkpoint is not None: with open(checkpoint, "rb") as f: state_dict = torch.load(f, map_location="cpu") try: if 'model' in state_dict.keys(): print(encoder_adapter) sam.load_state_dict(state_dict['model'], False) else: if image_size==1024 and encoder_adapter==True: sam.load_state_dict(state_dict, False) else: sam.load_state_dict(state_dict) except: print('*******interpolate') new_state_dict = load_from(sam, state_dict, image_size, vit_patch_size) sam.load_state_dict(new_state_dict) print(f"*******load {checkpoint}") return sam def load_from(sam, state_dicts, image_size, vit_patch_size): sam_dict = sam.state_dict() except_keys = ['mask_tokens', 'output_hypernetworks_mlps', 'iou_prediction_head'] new_state_dict = {k: v for k, v in state_dicts.items() if k in sam_dict.keys() and except_keys[0] not in k and except_keys[1] not in k and except_keys[2] not in k} pos_embed = new_state_dict['image_encoder.pos_embed'] token_size = int(image_size // vit_patch_size) if pos_embed.shape[1] != token_size: # resize pos embedding, which may sacrifice the performance, but I have no better idea pos_embed = pos_embed.permute(0, 3, 1, 2) # [b, c, h, w] pos_embed = F.interpolate(pos_embed, (token_size, token_size), mode='bilinear', align_corners=False) pos_embed = pos_embed.permute(0, 2, 3, 1) # [b, h, w, c] new_state_dict['image_encoder.pos_embed'] = pos_embed rel_pos_keys = [k for k in sam_dict.keys() if 'rel_pos' in k] global_rel_pos_keys = [k for k in rel_pos_keys if '2' in k or '5' in k or '7' in k or '8' in k or '11' in k or '13' in k or '15' in k or '23' in k or '31' in k] # print(sam_dict) for k in global_rel_pos_keys: h_check, w_check = sam_dict[k].shape rel_pos_params = new_state_dict[k] h, w = rel_pos_params.shape rel_pos_params = rel_pos_params.unsqueeze(0).unsqueeze(0) if h != h_check or w != w_check: rel_pos_params = F.interpolate(rel_pos_params, (h_check, w_check), mode='bilinear', align_corners=False) new_state_dict[k] = rel_pos_params[0, 0, ...] sam_dict.update(new_state_dict) return sam_dict