from qwen_omni_utils import process_mm_info import torch from transformers import Qwen2_5OmniForConditionalGeneration, Qwen2_5OmniProcessor import librosa import os from io import BytesIO from urllib.request import urlopen import argparse # @title inference function def inference(audio_path,model,processor,prompt, sys_prompt): messages = [ {"role": "system", "content": [{"type": "text", "text": sys_prompt}]}, {"role": "user", "content": [ {"type": "audio", "audio": audio_path}, {"type": "text", "text": prompt}, ] }, ] text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) audios, images, videos = process_mm_info(messages, use_audio_in_video=True) inputs = processor(text=text, audio=audios, images=images, videos=videos, return_tensors="pt", padding=True, use_audio_in_video=True) inputs = inputs.to(model.device).to(model.dtype) output = model.generate(**inputs, use_audio_in_video=True, return_audio=False, thinker_max_new_tokens=256, thinker_do_sample=False) text = processor.batch_decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=False) return text def transcribe(wavs_path, out_path, gpu_id, model): os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id) model_path = model model = Qwen2_5OmniForConditionalGeneration.from_pretrained( model_path, torch_dtype=torch.bfloat16, device_map="auto", ) prompt = "请将这段中文语音转换为纯文本,去掉标点符号。" processor = Qwen2_5OmniProcessor.from_pretrained(model_path) with open(wavs_path, "r") as f_in, open(out_path, "w") as f_out: for line in f_in: utt, path = line.strip().split(" ", maxsplit=1) try: response=inference(path,model,processor, prompt=prompt, sys_prompt="You are a speech recognition model.") except Exception as e: print(f"Inference failed: {str(e)}") response="None" text = response[0].strip() lines = text.strip().splitlines() text = lines[-1] print(f"[{utt}] >>> {text}") f_out.write(f"{utt} {text}\n") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--wavs_path", type=str) parser.add_argument("--out_path", type=str) parser.add_argument("--gpu", type=int, default=0) parser.add_argument("--model", type=str) args = parser.parse_args() transcribe( wavs_path=args.wavs_path, out_path=args.out_path, gpu_id=args.gpu, model=args.model )