0xgr3y commited on
Commit
3ee877e
·
verified ·
1 Parent(s): dd9b67b

Training w/ 13,55%

Browse files
Files changed (1) hide show
  1. README.md +17 -9
README.md CHANGED
@@ -30,7 +30,7 @@ base_model:
30
 
31
  <h1 align="center">Qwen2.5-Coder-0.5B-Instruct-Gensyn-Swarm Agent-ID (tall_tame_panther)</h1>
32
 
33
- <h2 align="center">Gensyn RL-Swarm: Training & GGUF Inference for Quantized LLMs</h2>
34
 
35
  <p align="center">
36
  <a href="https://huggingface.co/0xgr3y/Qwen2.5-Coder-0.5B-Instruct-Gensyn-Swarm-tall_tame_panther"><img src="https://img.shields.io/badge/🤗%20Hugging%20Face-Model-blue" alt="Model"></a>
@@ -41,16 +41,22 @@ base_model:
41
  <a href="https://github.com/gensyn-ai/rl-swarm/blob/main/LICENSE.TXT"><img src="https://img.shields.io/badge/License-MIT-green" alt="License"></a>
42
  </p>
43
 
 
 
 
 
 
 
44
  ---
45
 
46
  ## Model Overview
47
 
48
- Our pick an experimental (advanced) mode at this model a continuously trained **Qwen2.5-Coder-0.5B-Instruct** fine-tuned using **Gensyn RL-Swarm** framework with **GRPO (Group Relative Policy Optimization)** and supported format **GGUF (llama.cpp)** for enhanced code generation capabilities. **Note: Current training focuses on programming challenges with adaptive weighted sampling**.
49
 
50
  - **Agent ID:** `tall_tame_panther`
51
  - **Training Status:** 🟢 LIVE - Model updates automatically every 5-10 minutes
52
  - **Auto-Sync GGUF Pipeline Status:** 🟢 LIVE - Commits update automatically every hour
53
- - **Current Progress:** Round 13,054+ / 100,000 (13.05%)
54
  - **Framework Version:** Gensyn RL-Swarm v0.7.0
55
  - **Contract:** SwarmCoordinator v0.4.2
56
 
@@ -59,7 +65,7 @@ Our pick an experimental (advanced) mode at this model a continuously trained **
59
  - **Real-time Training**: Continuous learning with distributed RL across Gensyn swarm network
60
  - **Adaptive System**: Dynamic quality enhanced and dataset weighting for optimal learning
61
  - **Multi-domain Coding**: Trained on MBPP and CodeContests datasets with adaptive sampling
62
- - **GGUF Support**: Multiple quantized formats available (F16, Q3_K_M, Q4_K_M, Q5_K_M)
63
  - **llama.cpp Compatible**: Ready for edge deployment and local inference
64
  - **BF16 Precision**: Trained with bfloat16 for optimal performance
65
  - **TGI Compatible**: Supports Text Generation Inference for production deployment
@@ -219,17 +225,19 @@ ollama create qwen2.5-coder-swarm -f Modelfile
219
  ollama run qwen2.5-coder-swarm "Write a function to calculate the factorial of a number."
220
  ```
221
 
222
- ## Available Quantization Formats
223
 
224
  | Format | Size | Precision | Use Case | Download |
225
  |--------|------|-----------|----------|----------|
226
  | Safetensors (BF16) | 988 MB | BF16 | Full precision training/fine-tuning | `model.safetensors` |
227
  | GGUF F16 | 994 MB | FP16 | High quality inference | `Qwen2.5-Coder-0.5B-F16.gguf` |
 
228
  | GGUF Q5_K_M | 420 MB | 5-bit | Balanced quality/size | `Qwen2.5-Coder-0.5B-Q5_K_M.gguf` |
229
  | GGUF Q4_K_M | 398 MB | 4-bit | **Recommended** for production | `Qwen2.5-Coder-0.5B-Q4_K_M.gguf` |
230
  | GGUF Q3_K_M | 355 MB | 3-bit | Smallest, fastest | `Qwen2.5-Coder-0.5B-Q3_K_M.gguf` |
231
 
232
- All GGUF formats are **llama.cpp compatible** and auto-updated hourly.
 
233
 
234
  ## Chat Format & Conversational
235
 
@@ -386,8 +394,8 @@ Check commit history for exact timestamps.
386
 
387
  | Metric | Value | Target |
388
  |--------|-------|--------|
389
- | Completed Rounds | 13,054+ | 100,000 |
390
- | Training Progress | 13.05% | 100% |
391
  | Update Frequency | 5-10 min | Continuous |
392
 
393
  **Note**: **average\@k:** Average performance across `k` attempts, measuring consistency. **pass\@k:** Probability of at least one correct solution in `k` attempts, measuring capability.Current metrics track training rounds completed in decentralized swarm.
@@ -463,7 +471,7 @@ git checkout <commit-hash>
463
 
464
  <div align="center">
465
 
466
- **🤖 Trained with ❤️ using Gensyn RL-Swarm**
467
 
468
  [![Gensyn](https://img.shields.io/badge/Powered%20by-Gensyn%20AI-pink?style=for-the-badge)](https://gensyn.ai)
469
 
 
30
 
31
  <h1 align="center">Qwen2.5-Coder-0.5B-Instruct-Gensyn-Swarm Agent-ID (tall_tame_panther)</h1>
32
 
33
+ <h2 align="center">Gensyn RL-Swarm: Training & GGUF Quantized LLMs for Inference</h2>
34
 
35
  <p align="center">
36
  <a href="https://huggingface.co/0xgr3y/Qwen2.5-Coder-0.5B-Instruct-Gensyn-Swarm-tall_tame_panther"><img src="https://img.shields.io/badge/🤗%20Hugging%20Face-Model-blue" alt="Model"></a>
 
41
  <a href="https://github.com/gensyn-ai/rl-swarm/blob/main/LICENSE.TXT"><img src="https://img.shields.io/badge/License-MIT-green" alt="License"></a>
42
  </p>
43
 
44
+ <div align="center">
45
+
46
+ [![Gensyn](https://img.shields.io/badge/Powered%20by-Gensyn%20AI-pink?style=for-the-badge)](https://gensyn.ai)
47
+
48
+ </div>
49
+
50
  ---
51
 
52
  ## Model Overview
53
 
54
+ Our pick an **experimental (advanced) mode** at this model a continuously trained `Qwen2.5-Coder-0.5B-Instruct` fine-tuned using **Gensyn RL-Swarm** framework with **GRPO (Group Relative Policy Optimization)** and supported format **GGUF (llama.cpp)** for enhanced code generation capabilities. **Note: Current training focuses on programming challenges with adaptive weighted sampling**.
55
 
56
  - **Agent ID:** `tall_tame_panther`
57
  - **Training Status:** 🟢 LIVE - Model updates automatically every 5-10 minutes
58
  - **Auto-Sync GGUF Pipeline Status:** 🟢 LIVE - Commits update automatically every hour
59
+ - **Current Progress:** Round 13,533+ / 100,000 (13.53%)
60
  - **Framework Version:** Gensyn RL-Swarm v0.7.0
61
  - **Contract:** SwarmCoordinator v0.4.2
62
 
 
65
  - **Real-time Training**: Continuous learning with distributed RL across Gensyn swarm network
66
  - **Adaptive System**: Dynamic quality enhanced and dataset weighting for optimal learning
67
  - **Multi-domain Coding**: Trained on MBPP and CodeContests datasets with adaptive sampling
68
+ - **GGUF Support**: Multiple quantized formats available (F16, Q3_K_M, Q4_K_M, Q5_K_M, Q6_K)
69
  - **llama.cpp Compatible**: Ready for edge deployment and local inference
70
  - **BF16 Precision**: Trained with bfloat16 for optimal performance
71
  - **TGI Compatible**: Supports Text Generation Inference for production deployment
 
225
  ollama run qwen2.5-coder-swarm "Write a function to calculate the factorial of a number."
226
  ```
227
 
228
+ ## Available GGUF Quantization
229
 
230
  | Format | Size | Precision | Use Case | Download |
231
  |--------|------|-----------|----------|----------|
232
  | Safetensors (BF16) | 988 MB | BF16 | Full precision training/fine-tuning | `model.safetensors` |
233
  | GGUF F16 | 994 MB | FP16 | High quality inference | `Qwen2.5-Coder-0.5B-F16.gguf` |
234
+ | GGUF Q6_K | 506 MB | 6-bit | High quality compression | `Qwen2.5-Coder-0.5B-Q6_K.gguf` |
235
  | GGUF Q5_K_M | 420 MB | 5-bit | Balanced quality/size | `Qwen2.5-Coder-0.5B-Q5_K_M.gguf` |
236
  | GGUF Q4_K_M | 398 MB | 4-bit | **Recommended** for production | `Qwen2.5-Coder-0.5B-Q4_K_M.gguf` |
237
  | GGUF Q3_K_M | 355 MB | 3-bit | Smallest, fastest | `Qwen2.5-Coder-0.5B-Q3_K_M.gguf` |
238
 
239
+ > All GGUF formats are **llama.cpp is compatible** ready to use **Inferences chat** and auto-update be hourly.
240
+
241
 
242
  ## Chat Format & Conversational
243
 
 
394
 
395
  | Metric | Value | Target |
396
  |--------|-------|--------|
397
+ | Completed Rounds | 13,533+ | 100,000 |
398
+ | Training Progress | 13.53% | 100% |
399
  | Update Frequency | 5-10 min | Continuous |
400
 
401
  **Note**: **average\@k:** Average performance across `k` attempts, measuring consistency. **pass\@k:** Probability of at least one correct solution in `k` attempts, measuring capability.Current metrics track training rounds completed in decentralized swarm.
 
471
 
472
  <div align="center">
473
 
474
+ **Trained with 🩷 using Gensyn RL-Swarm**
475
 
476
  [![Gensyn](https://img.shields.io/badge/Powered%20by-Gensyn%20AI-pink?style=for-the-badge)](https://gensyn.ai)
477