Training w/ 13,55%
Browse files
README.md
CHANGED
|
@@ -30,7 +30,7 @@ base_model:
|
|
| 30 |
|
| 31 |
<h1 align="center">Qwen2.5-Coder-0.5B-Instruct-Gensyn-Swarm Agent-ID (tall_tame_panther)</h1>
|
| 32 |
|
| 33 |
-
<h2 align="center">Gensyn RL-Swarm: Training & GGUF
|
| 34 |
|
| 35 |
<p align="center">
|
| 36 |
<a href="https://huggingface.co/0xgr3y/Qwen2.5-Coder-0.5B-Instruct-Gensyn-Swarm-tall_tame_panther"><img src="https://img.shields.io/badge/🤗%20Hugging%20Face-Model-blue" alt="Model"></a>
|
|
@@ -41,16 +41,22 @@ base_model:
|
|
| 41 |
<a href="https://github.com/gensyn-ai/rl-swarm/blob/main/LICENSE.TXT"><img src="https://img.shields.io/badge/License-MIT-green" alt="License"></a>
|
| 42 |
</p>
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
---
|
| 45 |
|
| 46 |
## Model Overview
|
| 47 |
|
| 48 |
-
Our pick an experimental (advanced) mode at this model a continuously trained
|
| 49 |
|
| 50 |
- **Agent ID:** `tall_tame_panther`
|
| 51 |
- **Training Status:** 🟢 LIVE - Model updates automatically every 5-10 minutes
|
| 52 |
- **Auto-Sync GGUF Pipeline Status:** 🟢 LIVE - Commits update automatically every hour
|
| 53 |
-
- **Current Progress:** Round 13,
|
| 54 |
- **Framework Version:** Gensyn RL-Swarm v0.7.0
|
| 55 |
- **Contract:** SwarmCoordinator v0.4.2
|
| 56 |
|
|
@@ -59,7 +65,7 @@ Our pick an experimental (advanced) mode at this model a continuously trained **
|
|
| 59 |
- **Real-time Training**: Continuous learning with distributed RL across Gensyn swarm network
|
| 60 |
- **Adaptive System**: Dynamic quality enhanced and dataset weighting for optimal learning
|
| 61 |
- **Multi-domain Coding**: Trained on MBPP and CodeContests datasets with adaptive sampling
|
| 62 |
-
- **GGUF Support**: Multiple quantized formats available (F16, Q3_K_M, Q4_K_M, Q5_K_M)
|
| 63 |
- **llama.cpp Compatible**: Ready for edge deployment and local inference
|
| 64 |
- **BF16 Precision**: Trained with bfloat16 for optimal performance
|
| 65 |
- **TGI Compatible**: Supports Text Generation Inference for production deployment
|
|
@@ -219,17 +225,19 @@ ollama create qwen2.5-coder-swarm -f Modelfile
|
|
| 219 |
ollama run qwen2.5-coder-swarm "Write a function to calculate the factorial of a number."
|
| 220 |
```
|
| 221 |
|
| 222 |
-
## Available Quantization
|
| 223 |
|
| 224 |
| Format | Size | Precision | Use Case | Download |
|
| 225 |
|--------|------|-----------|----------|----------|
|
| 226 |
| Safetensors (BF16) | 988 MB | BF16 | Full precision training/fine-tuning | `model.safetensors` |
|
| 227 |
| GGUF F16 | 994 MB | FP16 | High quality inference | `Qwen2.5-Coder-0.5B-F16.gguf` |
|
|
|
|
| 228 |
| GGUF Q5_K_M | 420 MB | 5-bit | Balanced quality/size | `Qwen2.5-Coder-0.5B-Q5_K_M.gguf` |
|
| 229 |
| GGUF Q4_K_M | 398 MB | 4-bit | **Recommended** for production | `Qwen2.5-Coder-0.5B-Q4_K_M.gguf` |
|
| 230 |
| GGUF Q3_K_M | 355 MB | 3-bit | Smallest, fastest | `Qwen2.5-Coder-0.5B-Q3_K_M.gguf` |
|
| 231 |
|
| 232 |
-
All GGUF formats are **llama.cpp compatible** and auto-
|
|
|
|
| 233 |
|
| 234 |
## Chat Format & Conversational
|
| 235 |
|
|
@@ -386,8 +394,8 @@ Check commit history for exact timestamps.
|
|
| 386 |
|
| 387 |
| Metric | Value | Target |
|
| 388 |
|--------|-------|--------|
|
| 389 |
-
| Completed Rounds | 13,
|
| 390 |
-
| Training Progress | 13.
|
| 391 |
| Update Frequency | 5-10 min | Continuous |
|
| 392 |
|
| 393 |
**Note**: **average\@k:** Average performance across `k` attempts, measuring consistency. **pass\@k:** Probability of at least one correct solution in `k` attempts, measuring capability.Current metrics track training rounds completed in decentralized swarm.
|
|
@@ -463,7 +471,7 @@ git checkout <commit-hash>
|
|
| 463 |
|
| 464 |
<div align="center">
|
| 465 |
|
| 466 |
-
|
| 467 |
|
| 468 |
[](https://gensyn.ai)
|
| 469 |
|
|
|
|
| 30 |
|
| 31 |
<h1 align="center">Qwen2.5-Coder-0.5B-Instruct-Gensyn-Swarm Agent-ID (tall_tame_panther)</h1>
|
| 32 |
|
| 33 |
+
<h2 align="center">Gensyn RL-Swarm: Training & GGUF Quantized LLMs for Inference</h2>
|
| 34 |
|
| 35 |
<p align="center">
|
| 36 |
<a href="https://huggingface.co/0xgr3y/Qwen2.5-Coder-0.5B-Instruct-Gensyn-Swarm-tall_tame_panther"><img src="https://img.shields.io/badge/🤗%20Hugging%20Face-Model-blue" alt="Model"></a>
|
|
|
|
| 41 |
<a href="https://github.com/gensyn-ai/rl-swarm/blob/main/LICENSE.TXT"><img src="https://img.shields.io/badge/License-MIT-green" alt="License"></a>
|
| 42 |
</p>
|
| 43 |
|
| 44 |
+
<div align="center">
|
| 45 |
+
|
| 46 |
+
[](https://gensyn.ai)
|
| 47 |
+
|
| 48 |
+
</div>
|
| 49 |
+
|
| 50 |
---
|
| 51 |
|
| 52 |
## Model Overview
|
| 53 |
|
| 54 |
+
Our pick an **experimental (advanced) mode** at this model a continuously trained `Qwen2.5-Coder-0.5B-Instruct` fine-tuned using **Gensyn RL-Swarm** framework with **GRPO (Group Relative Policy Optimization)** and supported format **GGUF (llama.cpp)** for enhanced code generation capabilities. **Note: Current training focuses on programming challenges with adaptive weighted sampling**.
|
| 55 |
|
| 56 |
- **Agent ID:** `tall_tame_panther`
|
| 57 |
- **Training Status:** 🟢 LIVE - Model updates automatically every 5-10 minutes
|
| 58 |
- **Auto-Sync GGUF Pipeline Status:** 🟢 LIVE - Commits update automatically every hour
|
| 59 |
+
- **Current Progress:** Round 13,533+ / 100,000 (13.53%)
|
| 60 |
- **Framework Version:** Gensyn RL-Swarm v0.7.0
|
| 61 |
- **Contract:** SwarmCoordinator v0.4.2
|
| 62 |
|
|
|
|
| 65 |
- **Real-time Training**: Continuous learning with distributed RL across Gensyn swarm network
|
| 66 |
- **Adaptive System**: Dynamic quality enhanced and dataset weighting for optimal learning
|
| 67 |
- **Multi-domain Coding**: Trained on MBPP and CodeContests datasets with adaptive sampling
|
| 68 |
+
- **GGUF Support**: Multiple quantized formats available (F16, Q3_K_M, Q4_K_M, Q5_K_M, Q6_K)
|
| 69 |
- **llama.cpp Compatible**: Ready for edge deployment and local inference
|
| 70 |
- **BF16 Precision**: Trained with bfloat16 for optimal performance
|
| 71 |
- **TGI Compatible**: Supports Text Generation Inference for production deployment
|
|
|
|
| 225 |
ollama run qwen2.5-coder-swarm "Write a function to calculate the factorial of a number."
|
| 226 |
```
|
| 227 |
|
| 228 |
+
## Available GGUF Quantization
|
| 229 |
|
| 230 |
| Format | Size | Precision | Use Case | Download |
|
| 231 |
|--------|------|-----------|----------|----------|
|
| 232 |
| Safetensors (BF16) | 988 MB | BF16 | Full precision training/fine-tuning | `model.safetensors` |
|
| 233 |
| GGUF F16 | 994 MB | FP16 | High quality inference | `Qwen2.5-Coder-0.5B-F16.gguf` |
|
| 234 |
+
| GGUF Q6_K | 506 MB | 6-bit | High quality compression | `Qwen2.5-Coder-0.5B-Q6_K.gguf` |
|
| 235 |
| GGUF Q5_K_M | 420 MB | 5-bit | Balanced quality/size | `Qwen2.5-Coder-0.5B-Q5_K_M.gguf` |
|
| 236 |
| GGUF Q4_K_M | 398 MB | 4-bit | **Recommended** for production | `Qwen2.5-Coder-0.5B-Q4_K_M.gguf` |
|
| 237 |
| GGUF Q3_K_M | 355 MB | 3-bit | Smallest, fastest | `Qwen2.5-Coder-0.5B-Q3_K_M.gguf` |
|
| 238 |
|
| 239 |
+
> All GGUF formats are **llama.cpp is compatible** ready to use **Inferences chat** and auto-update be hourly.
|
| 240 |
+
|
| 241 |
|
| 242 |
## Chat Format & Conversational
|
| 243 |
|
|
|
|
| 394 |
|
| 395 |
| Metric | Value | Target |
|
| 396 |
|--------|-------|--------|
|
| 397 |
+
| Completed Rounds | 13,533+ | 100,000 |
|
| 398 |
+
| Training Progress | 13.53% | 100% |
|
| 399 |
| Update Frequency | 5-10 min | Continuous |
|
| 400 |
|
| 401 |
**Note**: **average\@k:** Average performance across `k` attempts, measuring consistency. **pass\@k:** Probability of at least one correct solution in `k` attempts, measuring capability.Current metrics track training rounds completed in decentralized swarm.
|
|
|
|
| 471 |
|
| 472 |
<div align="center">
|
| 473 |
|
| 474 |
+
**Trained with 🩷 using Gensyn RL-Swarm**
|
| 475 |
|
| 476 |
[](https://gensyn.ai)
|
| 477 |
|